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Abstract 

Additive manufacturing (AM) is an emerging method for cost-efficient fabrication of complex 

topology nuclear reactor parts from high-strength corrosion resistance alloys, such as stainless 

steel and Inconel. AM of metallic structures for nuclear energy applications is currently based on 

laser powder bed fusion (LPBF) process. Some of the challenges with using LPBF method for 

nuclear manufacturing include the possibility of introducing pores into metallic structures. 

Integrity of AM structures needs to be evaluated nondestructively because material flaws could 

lead to premature failures in high temperature nuclear reactor environment. Currently, there exist 

limited capabilities to evaluate actual AM structures non-destructively. Pulsed Thermal 

Tomography Imaging (PTT) provides a capability for non-destructive evaluation (NDE) of sub-

surface defects in arbitrary size structures. The PTT method is based on recording material surface 

temperature transients with infrared (IR) camera following thermal pulse delivered on material 

surface with flash light. The PTT method has advantages for NDE of actual AM structures because 

the method involves one-sided non-contact measurements and fast processing of large sample 

areas captured in one image. Following initial qualification of an AM component for deployment 

in a nuclear reactor, a PTT system can also be used for in-service nondestructive evaluation (NDE) 

applications. In this report, we describe recent progress in enhancing PTT capabilities in detecting 

and visualizing microscopic defects in metallic specimens. The thermal tomography (TT) 

algorithm obtains depth reconstructions of spatial effusivity from the data cube of sequentially 

recorded surface temperatures. However, interpretation of TT images is non-trivial because of 

blurring of images with increasing depth. To address this challenge, we have developed a deep 

learning convolutional neural network (CNN) to classify size and orientation subsurface defects 

in simulated TT images. CNN is trained on a database of TT images created for a set of simulated 

metallic structures with elliptical subsurface voids. Test of CNN performance demonstrate the 

ability to classify radii and angular orientation of subsurface defects in TT images. In addition, we 

have shown that CNN trained on elliptical defects is capable of classifying irregular-shaped defects 

obtained from scanning electron microscopy (SEM) of stainless steel sections printed with LPBF. 
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1. Introduction 

Additive manufacturing (AM) of metals is an emerging method for cost-efficient production 

of low volume custom structures for industries, such as nuclear energy [1]. Metals of interest for 

nuclear applications typically include high-strength corrosion-resistant alloys, such as stainless 

steel 316L (SS316L) and Inconel 718 (IN718). Because of high melting temperature, AM of 

SS316L and IN718 is currently based on laser powder-bed fusion (LPBF) process [2]. Due to the 

intrinsic features of LPBF process, pores can appear in 3D printed metallic structures [2]. With the 

exposure to high temperature and creep damage in high-temperature nuclear reactors, a pore can 

potentially become a seed for cracking [3]. Because of stringent safety requirements, each AM 

metallic structure needs to be qualified through nondestructive examination before deployment in 

a nuclear reactor [4-7]. If a defect is discovered, either a flaw mitigation with heat treatment can 

be performed, or the part could be disqualified from service. 

Typical porosity defects observed in LPBF manufacturing consist of spheroidal-shape keyhole 

pores caused by excessive laser power, irregular-shape lack of fusion (LOF) pores caused by 

insufficient laser power, and spherical gas pores caused by trapped of gas in solidifying melt pool. 

Sizes of pores depend on the quality of the LPBF process. Typical sizes of keyhole and LOF pores 

in tens to hundreds of microns, while gas pores sizes are on the order of a few microns [5]. Prior 

studies indicate that larger size pores located closer to surface are more likely to cause fatigue 

crack initiation. High-resolution imaging with X-ray or neutron computed tomography (CT) can 

be used for imaging pores in small coupons to evaluate quality of LPBF process. However, 

applications of X-ray or neutron CT to NDE of actual AM structures are limited because of large 

size, lack of symmetry and complex shapes of AM structures. Ultrasonic testing is scalable with 

structure size, but face challenges because the rough surfaces, characteristic of AM structures, 

affect the probe coupling. For high-resolution ultrasonic tomography, imaging of large structures 

is time-consuming because of point-by-point raster scanning of specimens. 

We investigate Infrared Pulsed Thermal Tomography (PTT) for detection of subsurface 

microscopic pores in AM structures. This method offers several potential advantages because PTT 

measurements are one-sided, non-contact, and scalable to arbitrary size structures [8-10]. The PTT 

method consists of recording material surface temperature transients with an infrared (IR) camera, 

following deposition of thermal impulse on material surface with a flash lamp. Thermal 

tomography (TT) algorithm obtains depth reconstructions of spatial effusivity from the data cube 

of sequentially recorded surface temperatures. However, interpretation of TT images is non-trivial 

because of blurring of images with increasing depth. In this report, we describe development of a 

deep learning convolutional neural network (CNN) to classify size and orientation subsurface 

defects in simulated thermal tomography (TT) images [11]. CNN is trained on a database of TT 

images created for a set of simulated metallic structures with elliptical subsurface voids. Test of 

CNN performance demonstrate the ability to classify radii and angular orientation of subsurface 

defects in TT images. In addition, we show that CNN trained on elliptical defects is capable of 

classifying irregular-shaped defects obtained from scanning electron microscopy (SEM) of 

stainless steel sections printed with LPBF. 
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2. Infrared Pulsed Thermal Tomography Imaging 

2.1. Imaging System Setup 

In the experimental PTT system, data is acquired with a laboratory setup consisting of a 

megapixel fast frame infrared (IR) camera and flash lamp is shown in schematic depiction in 

Figure 1. A pulse trigger sends a signal to capacitor to discharge in a circuit containing white light 

flash lamp. The flash lamp source delivers a pulse of thermal energy to material surface. Heat 

transfer takes place from the heated surface to the interior of the sample, resulting in a continuous 

decrease of the surface temperature. For better heat absorption, and to remove the effect of 

different surface emissivity, all materials in this study were spray-painted with washable graphite 

paint. As heat deposited with flash lamp the surface starts diffusing into the material bulk, presence 

of low-density internal material inclusions is revealed through appearance of local temperature 

“hot spots” on the surface. This effect occurs because low density defects have lower thermal 

diffusivity compared with solid material. The defects act as thermal resistances and slow down 

thermal diffusion, which causes temperature difference on the material surface between regions of 

defects and non-defects. A megapixel fast frame infrared (IR) camera records blackbody radiation 

to obtain time-resolved images of surface temperature distribution T(x,y,t). The acquired thermal-

imaging data cube therefore consist of a series of 2D images of the sample’s surface temperature 

at consecutive time instants. Thermal tomography algorithms performs reconstruction of spatial 

effusivity e(x,y,z), which allows for depth visualization of material defects.  

The laboratory system for data acquisition uses a FLIR x8501sc with Indium Antimonide 

(InSb) detector camera, which has integration time of 270ns, NETD sensitivity of <30mK, and 

frame rate of at 180Hz at full frame imaging. The flash lamp source (Balcar ASYM 6400 in the 

experiment) delivers a pulse of 6400J/2ms thermal energy to material surface. The flash lamp is 

typically positioned at 30cm to 50cm distance to the specimen under investigation. The exact 

distance and angle of illumination of the flash lamp are determined experimentally for each 

specimen. This is decided by positioning the IR camera at the focal length of the lens, and placing 

the flash lamp such that the IR field of view is not blocked, nor does IR camera block the flash. 

      
Figure 1 – Schematic drawing of infrared pulsed thermal tomography data acquisition setup 
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2.2. Development of Simulated Thermal Tomography Images of Metallic 
Plates with 2D Elliptical Defects 

In this work, we model defects in AM steel as elliptical air voids in 2D. We choose to use an 

elliptical model for the defect because thermal imaging based on heat diffusion smooths out rough 

edges present in the defect. This smoothing effect means that an arbitrarily shaped defect can be 

potentially described with an equivalent ellipse. The diagram depicting elliptical void labeling is 

given in Figure 2. The x-axis is along the depth of the plate, and the y-axis is along the face of the 

plate. The ellipse is characterized by semi-major and semi-minor axes rx and ry, and angular 

orientation θ measured from the y-axis. PTT system performance for SS316 plates with elliptical 

defects was simulated with 2D heat transfer using MATLAB PDE Toolbox.  

 

 
 Figure 2 – Diagram demonstrating labelling of the simulated defects. Depth of the plate is along 

the x-axis, and y-axis is along the face of the plate. The semi-major and semi-minor axes of the 

elliptical air void are rx and ry. The ellipse is rotated by an angle θ measured relative to the y-

axis. 

 

Simulated effusivity reconstructions e(x,y) were obtained for surface temperature transients 

generated with MATLAB heat transfer computer simulations for SS316 plates containing elliptical 

voids with different sizes and orientations by simulating. Thermal tomography (TT) reconstruction 

algorithm calculates spatial effusivity from the data cube of surface temperature measurements to 

visualize internal material defects. Depth profile of effusivity e(x) is obtained from surface 

temperature measurements as follows 

2

2 1
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Q d
e x x

dt T t


 


 
  

 
       (1) 

where Q is the instantaneously deposited surface thermal energy density, and α is the uniform 

material thermal diffusivity [11,12]. Three examples of effusivity reconstruction of SS316 plates 

with dimensions 5mm x 5mm containing defects (rx = 160µm, ry = 310µm and θ = 0o), (rx =260µm, 
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ry = 310µm, and θ = 45o), and (rx = 60µm, ry = 210µm and θ = -15o) are shown below in Figures 

3(a), 3(b) and 3(c), respectively. Reconstructions were performed for assumed imaging frame rate 

of 540Hz and 340 pixels spatial sampling of 5mm-long surface line. 

 

Figure 3 – Simulated effusitvity reconstruction of SS316 plate containing elliptical defects. (a) rx 

= 160µm, ry = 310µm, θ = 0o. (b) rx = 260µm, ry = 310µm, θ = 45o (c) rx = 60µm, ry = 210µm, θ 

= -15o
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3. Convolutional Neural Network (CNN) for Classification of 
Thermal Tomography (TT) Images 

3.1. Development of Convolutional Neural Network (CNN) 

We developed a deep learning convolutional neural network (CNN) for classification of 

defects in effusivity reconstruction images. The CNN takes effusivity reconstruction images as 

inputs, and returns characteristic dimensions rx, ry, and θ of the elliptical defects. The flow chart 

of CNN algorithm is shown in Figure 4. To construct the CNN, we used AutoKeras’s image 

classification class. There are four layers to the CNN: The input node is ImageInput, specific to 

images as represented by a Python numpy array. The training and test images in the input layer of 

CNN are of the same size. Following the input node, the CNN uses two AutoKeras blocks—

ConvBlock and DenseBlock. AutoKeras is unique in that arguments are tuned automatically, and 

therefore left initially unspecified. ConvBlock includes convolutional and pooling layers required 

for the CNN, and DenseBlock encompasses the fully connected network following the 

convolutional layers. In the CNN process, convolution layers are followed by pooling layers, until 

a flattening layer compresses the data into a one-dimensional array. Convolution layers consists of 

identical neurons that are connected to local neurons in previous layer. As the neuron, or filter, 

operates on parts of the input image, its pixel values are multiplied by the filter values. This 

convolution operation creates a “feature map” from the original image. This allows features of the 

image to be isolated and identified. More convolution layers allow the CNN to detect lower-level 

features within the image, which is why convolution layers are usually stacked. Pooling layers—

in this case max pooling layers—are also utilized between convolution layers to keep feature maps 

generalized. Max pooling takes the maximum value from each segment of the feature map 

produced by a given convolutional layer. Thus, pooling is necessary to ensure that the CNN is 

sensitive to small translations in the input. After flattening, this array is passed through a traditional 

fully connected (dense) layer to make the final prediction. 

 
Figure 4 – Flowchart of CNN algorithm 
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A CNN has some advantages over a fully connected network, especially in image analysis and 

classification. The CNN’s feature map makes it particularly adept at detecting the subtle features 

important aspects of images, crucial for image classification. Additionally, CNN uses copies of 

the same neuron to process data, which saves both time and memory. As a result, training and 

prediction computer running time of the CNN is less than 150 seconds on average. 

 

3.2. CNN Classification of Elliptical Defects in Simulated TT Images  

The training set for CNN consisted of 100 simulated thermal effusivity images for plates with 

elliptical defects with different sizes and angular orientations. The defects range in size from 

20 𝑥 20 𝜇m to 310 𝑥 310 𝜇m with angular orientations in the range from -45o to 45o
. The test set 

consisted of 15 different images, which were not part of the training set. Performance of CNN in 

classification of defects in 10 TT images in the test set is illustrated in Figure 5. Characteristic 

dimensions of defects are displayed as points in rx-ry-θ feature hyperspace diagram. Actual defects 

are indicated with circles, and predictions with CNN are indicated with squares. Qualitatively, the 

error in CNN predictions is quite small.  

  
Figure 5 – Actual and predicted (classified by CNN in TT images) elliptical defects indicated by 

points in rx-ry-θ feature hyperspace diagram. Predictions are marked with squares and actual 

defects are marked as circles 
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Figure 6 illustrates CNN performance in classification of elliptical defects in simulated TT 

images by displaying on the same set of axis ellipses corresponding to actual and predicted set of 

rx, ry, and θ values. The actual defects in test TT images are drawn with green color. Ellipses 

predicted with CNN are shown in blue. Parameters of the four actual elliptical defects shown in 

Figures 6(a) through 6(d) are (rx = 360m, ry = 60m, θ = 0), (rx = 60m, ry = 310m, θ = 0), 

(rx = 110m, ry = 260m, θ = 30), (rx = 310m, ry = 160m, θ = -40). Qualitatively, predictions 

obtained with CNN have a relatively small error.  

 

 

                                          (a)                                                                         (b) 

 

 

                                            (c)                                                                     (d)                 

 

Figure 6 – Actual elliptical defects in test TT images (green) and ellipses predicted by CNN 

(blue). Parameters of actual defects are (a) rx = 360m, ry = 60m, θ = 0; (b) rx = 60m, ry = 

310m, θ = 0 (c) rx = 110m, ry = 260m, θ = 30; (d) rx = 310m, ry = 160m, θ = -40 
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3.3. CNN Classification of Defects from SEM Images of LPBF SS316 in 
Simulated TT Images  

We investigate if CNN trained on TT images with elliptical defects is capable of classifying 

irregular shape defects. For this study, we use SEM (scanning electron microscopy) images of 

actual defects in LPBF SS316 specimens. One example of such defect is shown in Figure 7(a). To 

characterize this defect we extract the shape from the SEM image and fit an ellipse with an 

equivalent surface area. For the defect in Figure 7(a), we estimate that rx = 43µm, ry = 75µm, and 

θ = 37o. The air voids with the shape extracted from the SEM image are shown in Figures 7(b) to 

7(d). Angular orientations are θ = 37o, θ = 53o and θ = 8o, respectively. TT images were developed 

by creating plate structures with embedded air voids with the shapes of the defects shown in 

Figures 7(b) to 7(d), performing heat transfer calculations with MATLAB, and calculating thermal 

effusivity reconstructions. CNN predictions are shown in Figures 7(b) to 7(d) with blue ellipses. 

    
(a)                                                                        (b) 

 
                                     (c)                                                                       (d)  

Figure 7 – (a) SEM image of defect with equivalent ellipse dimensions rx = 43µm, ry = 75µm. 

(b) – (d) Air voids and CNN predictions with CNN (blue). Angular orientations: (b) θ = 37o; (c) 

θ = 43o; (d) θ = 8o 
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Another defect in LPBF SS316 imaged with SEM is shown in Figure 8(a). We following the 

same procedure of extracting the shape from SEM image, and fitting an equivalent area ellipse. 

The size of the equivalent ellipse for the defect in Figure 8(a) is rx = 10µm and ry = 37µm, with θ 

= 19o orientation. Figures 8(b) to 8(d) show CNN predictions (blue ellipses) for TT images with 

embedded rotated air void. Angular orientations of ellipses CNN associates with the defects in 

Figures 8(b) to 8(d) are θ = 18, θ = -42 and θ = 1. Qualitatively, the error in CNN predictions 

is relatively small. 

 
(a)                                                                        (b) 

 
                                       (c)                                                                       (d) 

Figure 8 – (a) SEM image of defect with equivalent ellipse dimensions of rx = 10µm and ry = 

37µm, θ = 19o. (b) – (d) CNN prediction of angular orientation (blue ellipse): (b) θ = 18 (c) θ = 

-42 (d) θ = 1 
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4. Conclusions 

We have described development of a deep learning convolutional neural network (CNN) to 

classify size and orientation subsurface defects in simulated thermal tomography (TT) images. 

CNN is trained on a database of TT images created for a set of simulated metallic structures with 

elliptical subsurface voids. TT images were created with MATLAB PDE Toolbox heat transfer 

calculations for 2D structures. Test of CNN performance demonstrate the ability to classify radii 

and angular orientation of subsurface defects in TT images. In addition, we have shown that CNN 

trained on elliptical defects is capable of classifying irregular-shaped defects obtained from 

scanning electron microscopy (SEM) of stainless steel sections printed with LPBF. 

In future developments, we plan extend our method to the classification of 3D defects. This 

can be accomplished by calculating heat transfer in 3D for a structure containing an internal defect. 

The CNN can be modified to take 3D arrays as an input and perform classification of 3D defect 

shapes. In addition, in both 2D and 3D models, we can test CNN in detecting of cracks in TT 

images. Good performance of CNN classification of ellipses elongated in the direction 

perpendicular to the plate surface gives an indication that crack detection using this computational 

technique is possible.  
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